249 research outputs found

    Endotracheal temperature and humidity measurements in laryngectomized patients: intra- and inter-patient variability

    Get PDF
    This study assesses intra- and inter-patient variability in endotracheal climate (temperature and humidity) and effects of heat and moister exchangers (HME) in 16 laryngectomized individuals, measured repeatedly (N = 47). Inhalation Breath Length (IBL) was 1.35 s without HME and 1.05 s with HME (P < 0.0001). With HME, end-inspiratory (minimum) humidity values increased 5.8 mg H2O/L (P < 0.0001) and minimum temperature values decreased 1.6°C (P < 0.0001). For the temperature and humidity minimums, the inter-patient variability was much smaller than the short- and long-term intra-patient variability. For exhalation breath length and full breath length, the opposite was the case. Conclusions: (1) Because inter-patient variability is smaller than intra-patient variability, investigating endotracheal climate in a limited number of laryngectomized subjects is justified, provided repeated measurements per patient are accomplished; (2) main contributor to intra-patient variability is the positioning of the catheter tip in the trachea; (3) an HME leads to a shortened IBL which enhances the HME effect

    A newly developed tool for intra-tracheal temperature and humidity assessment in laryngectomized individuals: the Airway Climate Explorer (ACE)

    Get PDF
    The aim of this study is to develop a postlaryngectomy airway climate explorer (ACE) for assessment of intratracheal temperature and humidity and of influence of heat and moisture exchangers (HMEs). Engineering goals were within-device condensation prevention and fast response time characteristics. The ACE consists of a small diameter, heated air-sampling catheter connected to a heated sensor house, containing a humidity sensor. Air is sucked through the catheter by a controlled-flow pump. Validation was performed in a climate chamber using a calibrated reference sensor and in a two-flow system. Additionally, the analyser was tested in vivo. Over the clinically relevant range of humidity values (5–42 mg H2O/l air) the sensor output highly correlates with the reference sensor readings (R2 > 0.99). The 1–1/e response times are all <0.5 s. A first in vivo pilot measurement was successful. The newly developed, verified, fast-responding ACE is suitable for postlaryngectomy airway climate assessment

    Isolation and Partial Characterisation of a Novel Lectin from Aegle marmelos Fruit and Its Effect on Adherence and Invasion of Shigellae to HT29 Cells

    Get PDF
    Lectins are a class of ubiquitous proteins/glycoproteins that are abundantly found in nature. Lectins have unique carbohydrate binding property and hence have been exploited as drugs against various infectious diseases. We have isolated one such novel lectin from the fruit pulp of Aegle marmelos. The isolated lectin was partially characterised and its effect against Shigella dysenteriae infection was evaluated. The isolated lectin was found to be a dimeric protein with N-acetylgalactosamine, mannose and sialic acid binding specificity. The effect of Aegle marmelos fruit lectin on the adherence of Shigella dysenteriae to human colonic epithelial cells (HT29 cells) was evaluated by Enzyme Linked Immune Sorbent Assay and invasion was analysed. The protective nature of the Aegle marmelos fruit lectin was assessed by analyzing apoptosis through dual staining method. Aegle marmelos fruit lectin significantly inhibited hemagglutination activity of Shigella and its minimum inhibitory concentration is 0.625 µg/well. Further, at this concentration lectin inhibited Shigella dysenteriae adherence and invasion of HT29 cells and protects the HT29 cells from Shigella dysenteriae induced apoptosis. To conclude, isolated lectin dimeric protein with N-acetylgalactosamine, Mannose and sialic acid binding specificity and inhibits adherence and invasion of Shigellae to HT29 cells thus, protects the host

    A Simple Standard for Sharing Ontological Mappings (SSSOM).

    Get PDF
    Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec. Database URL: http://w3id.org/sssom/spec

    Lactobacillus fermentum ME-3 – an antimicrobial and antioxidative probiotic

    Get PDF
    The paper lays out the short scientific history and characteristics of the new probiotic Lactobacillus fermentum strain ME-3 DSM-14241, elaborated according to the regulations of WHO/FAO (2002). L. fermentum ME-3 is a unique strain of Lactobacillus species, having at the same time the antimicrobial and physiologically effective antioxidative properties and expressing health-promoting characteristics if consumed. Tartu University has patented this strain in Estonia (priority June 2001, patent in 2006), Russia (patent in 2006) and the USA (patent in 2007). The paper describes the process of the identification and molecular typing of this probiotic strain of human origin, its deposition in an international culture collection, and its safety assessment by laboratory tests and testing on experimental animals and volunteers. It has been established that L. fermentum strain ME-3 has double functional properties: antimicrobial activity against intestinal pathogens and high total antioxidative activity (TAA) and total antioxidative status (TAS) of intact cells and lysates, and it is characterized by a complete glutathione system: synthesis, uptake and redox turnover. The functional efficacy of the antimicrobial and antioxidative probiotic has been proven by the eradication of salmonellas and the reduction of liver and spleen granulomas in Salmonella Typhimurium-infected mice treated with the combination of ofloxacin and L. fermentum strain ME-3. Using capsules or foodstuffs enriched with L. fermentum ME-3, different clinical study designs (including double-blind, placebo-controlled, crossover studies) and different subjects (healthy volunteers, allergic patients and those recovering from a stroke), it has been shown that this probiotic increased the antioxidative activity of sera and improved the composition of the low-density lipid particles (LDL) and post-prandial lipids as well as oxidative stress status, thus demonstrating a remarkable anti-atherogenic effect. The elaboration of the probiotic L. fermentum strain ME-3 has drawn on wide international cooperative research and has taken more than 12 years altogether. The new ME-3 probiotic-containing products have been successfully marketed and sold in Baltic countries and Finland
    corecore